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RND-package Risk Neutral Density Extraction Package

Description

This package is a collection of various functions to extract the implied risk neutral density from
option.

Details

Package: RND
Type: Package
Version: 1.2
Date: 2017-01-10
License: GPL (>= 2)

Author(s)

Kam Hamidieh <khamidieh@gmail.com>



approximate.max 3

References

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

Examples

###
### You should see that all methods extract the same density!
###

r = 0.05
te = 60/365
s0 = 1000
sigma = 0.25
y = 0.02

call.strikes.bsm = seq(from = 500, to = 1500, by = 5)
market.calls.bsm = price.bsm.option(r =r, te = te, s0 = s0,

k = call.strikes.bsm, sigma = sigma, y = y)$call

put.strikes.bsm = seq(from = 500, to = 1500, by = 5)
market.puts.bsm = price.bsm.option(r =r, te = te, s0 = s0,

k = put.strikes.bsm, sigma = sigma, y = y)$put

###
### See where your results will be outputted to...
###

getwd()

###
### Running this may take a few minutes...
###
### MOE(market.calls.bsm, call.strikes.bsm, market.puts.bsm,
### put.strikes.bsm, s0, r , te, y, "bsm2")
###

approximate.max Max Function Approximation

Description

approximate.max gives a smooth approximation to the max function.

Usage

approximate.max(x, y, k = 5)
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Arguments

x the first argument for the max function

y the second argument fot the max function

k a tuning parameter. The larger this value, the closer the function output to a true
max function.

Details

approximate.max approximates the max of x, and y as follows:

g(x, y) =
1

1 + exp(−k(x− y))
, max(x, y) ≈ xg(x, y) + y(1− g(x, y))

Value

approximate maximum of x and y

Author(s)

Kam Hamidieh

References

Melick, W. R. and Thomas, C.P. (1997) Recovering an asset’s implied pdf from option proces: An
application to crude oil during the gulf crisis. Journal of Financial and Quantitative Analysis, 32(1),
91-115

Examples

#
# To see how the max function compares with approximate.max,
# run the following code.
#

i = seq(from = 0, to = 10, by = 0.25)
y = i - 5
max.values = pmax(0,y)
approximate.max.values = approximate.max(0,y,k=5)
matplot(i, cbind(max.values, approximate.max.values), lty = 1, type = "l",
col=c("black","red"), main = "Max in Black, Approximate Max in Red")
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bsm.objective BSM Objective Function

Description

bsm.objective is the objective function to be minimized in extract.bsm.density.

Usage

bsm.objective(s0, r, te, y, market.calls, call.strikes, call.weights = 1,
market.puts, put.strikes, put.weights = 1, lambda = 1, theta)

Arguments

s0 current asset value

r risk free rate

te time to expiration

y dividend yield

market.calls market calls (most expensive to cheapest)

call.strikes strikes for the calls (smallest to largest)

call.weights weights to be used for calls

market.puts market calls (cheapest to most expensive)

put.strikes strikes for the puts (smallest to largest)

put.weights weights to be used for calls

lambda Penalty parameter to enforce the martingale condition

theta initial values for the optimization. This must be a vector of length 2: first com-
ponent is µ, the lognormal mean of the underlying density, and the second com-
ponent is

√
tσ which is the time scaled volatility parameter of the underlying

density.

Details

This function evaluates the weighted squared differences between the market option values and
values predicted by the Black-Scholes-Merton option pricing formula.

Value

Objective function evalued at a specific set of values.

Author(s)

Kam Hamidieh
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References

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

Examples

r = 0.05
te = 60/365
s0 = 1000
sigma = 0.25
y = 0.01

call.strikes = seq(from = 500, to = 1500, by = 25)
market.calls = price.bsm.option(r =r, te = te, s0 = s0,

k = call.strikes, sigma = sigma, y = y)$call

put.strikes = seq(from = 510, to = 1500, by = 25)
market.puts = price.bsm.option(r =r, te = te, s0 = s0,

k = put.strikes, sigma = sigma, y = y)$put

###
### perfect initial values under BSM framework
###

mu.0 = log(s0) + ( r - y - 0.5 * sigma^2) * te
zeta.0 = sigma * sqrt(te)
mu.0
zeta.0

###
### The objective function should be *very* small
###

bsm.obj.val = bsm.objective(theta=c(mu.0, zeta.0), r = r, y=y, te = te, s0 = s0,
market.calls = market.calls, call.strikes = call.strikes,
market.puts = market.puts, put.strikes = put.strikes, lambda = 1)

bsm.obj.val

compute.implied.volatility

Compute Impied Volatility

Description

compute.implied.volatility extracts the implied volatility for a call option.

Usage

compute.implied.volatility(r, te, s0, k, y, call.price, lower, upper)
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Arguments

r risk free rate

te time to expiration

s0 current asset value

k strike of the call option

y dividend yield

call.price call price

lower lower bound of the implied volatility to look for

upper upper bound of the implied volatility to look for

Details

The simple R uniroot function is used to extract the implied volatility.

Value

sigma extratced implied volatility

Author(s)

Kam Hamidieh

References

J. Hull (2011) Options, Futures, and Other Derivatives and DerivaGem Package Prentice Hall,
Englewood Cliffs, New Jersey, 8th Edition

R. L. McDonald (2013) Derivatives Markets Pearson, Upper Saddle River, New Jersey, 3rd Edition

Examples

#
# Create prices from BSM with various sigma's
#

r = 0.05
y = 0.02
te = 60/365
s0 = 400

sigma.range = seq(from = 0.1, to = 0.8, by = 0.05)
k.range = floor(seq(from = 300, to = 500, length.out = length(sigma.range)))
bsm.calls = numeric(length(sigma.range))

for (i in 1:length(sigma.range))
{

bsm.calls[i] = price.bsm.option(r = r, te = te, s0 = s0, k = k.range[i],
sigma = sigma.range[i], y = y)$call

}
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bsm.calls
k.range

#
# Computed implied sigma's should be very close to sigma.range.
#

compute.implied.volatility(r = r, te = te, s0 = s0, k = k.range, y = y,
call.price = bsm.calls, lower = 0.001, upper = 0.999)

sigma.range

dew Edgeworth Density

Description

dew is the probability density function implied by the Edgeworth expansion method.

Usage

dew(x, r, y, te, s0, sigma, skew, kurt)

Arguments

x value at which the denisty is to be evaluated

r risk free rate

y dividend yield

te time to expiration

s0 current asset value

sigma volatility

skew normalized skewness

kurt normalized kurtosis

Details

This density function attempts to capture deviations from lognormal density by using Edgeworth
expansions.

Value

density value at x

Author(s)

Kam Hamidieh
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References

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

R. Jarrow and A. Rudd (1982) Approximate valuation for arbitrary stochastic processes. Journal of
Finanical Economics, 10, 347-369

C.J. Corrado and T. Su (1996) S&P 500 index option tests of Jarrow and Rudd’s approximate option
valuation formula. Journal of Futures Markets, 6, 611-629

Examples

#
# Look at a true lognorma density & related dew
#
r = 0.05
y = 0.03
s0 = 1000
sigma = 0.25
te = 100/365
strikes = seq(from=600, to = 1400, by = 1)
v = sqrt(exp(sigma^2 * te) - 1)
ln.skew = 3 * v + v^3
ln.kurt = 16 * v^2 + 15 * v^4 + 6 * v^6 + v^8

skew.4 = ln.skew * 1.50
kurt.4 = ln.kurt * 1.50

skew.5 = ln.skew * 0.50
kurt.5 = ln.kurt * 2.00

ew.density.4 = dew(x=strikes, r=r, y=y, te=te, s0=s0, sigma=sigma,
skew=skew.4, kurt=kurt.4)

ew.density.5 = dew(x=strikes, r=r, y=y, te=te, s0=s0, sigma=sigma,
skew=skew.5, kurt=kurt.5)

bsm.density = dlnorm(x = strikes, meanlog = log(s0) + (r - y - (sigma^2)/2)*te,
sdlog = sigma*sqrt(te), log = FALSE)

matplot(strikes, cbind(bsm.density, ew.density.4, ew.density.5), type="l",
lty=c(1,1,1), col=c("black","red","blue"),
main="Black = BSM, Red = EW 1.5 Times, Blue = EW 0.50 & 2")

dgb Generalized Beta Density

Description

dgb is the probability density function of generalized beta distribution.
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Usage

dgb(x, a, b, v, w)

Arguments

x value at which the denisty is to be evaluated

a power parameter > 0

b scale paramter > 0

v first beta paramter > 0

w second beta parameter > 0

Details

Let B be a beta random variable with parameters v and w, then Z = b(B/(1−B))1/a is a general-
ized beta with parameters (a,b,v,w).

Value

density value at x

Author(s)

Kam Hamidieh

References

R.M. Bookstaber and J.B. McDonald (1987) A general distribution for describing security price
returns. Journal of Business, 60, 401-424

X. Liu and M.B. Shackleton and S.J. Taylor and X. Xu (2007) Closed-form transformations from
risk-neutral to real-world distributions Journal of Business, 60, 401-424

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

Examples

#
# Just simple plot of the density
#

x = seq(from = 500, to = 1500, length.out = 10000)
a = 10
b = 1000
v = 3
w = 3
dx = dgb(x = x, a = a, b = b, v = v, w = w)
plot(dx ~ x, type="l")



dmln 11

dmln Density of Mixture Lognormal

Description

mln is the probability density function of a mixture of two lognormal densities.

Usage

dmln(x, alpha.1, meanlog.1, meanlog.2, sdlog.1, sdlog.2)

Arguments

x value at which the denisty is to be evaluated

alpha.1 proportion of the first lognormal. Second one is 1 - alpha.1

meanlog.1 mean of the log of the first lognormal

meanlog.2 mean of the log of the second lognormal

sdlog.1 standard deviation of the log of the first lognormal

sdlog.2 standard deviation of the log of the second lognormal

Details

mln is the density f(x) = alpha.1 * g(x) + (1 - alpha.1) * h(x), where g and h are densities of two
lognormals with parameters (mean.log.1, sdlog.1) and (mean.log.2, sdlog.2) respectively.

Value

out density value at x

Author(s)

Kam Hamidieh

References

B. Bahra (1996): Probability distribution of future asset prices implied by option prices. Bank of
England Quarterly Bulletin, August 1996, 299-311

P. Soderlind and L.E.O. Svensson (1997) New techniques to extract market expectations from fi-
nancial instruments. Journal of Monetary Economics, 40, 383-429

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London
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Examples

#
# A bimodal risk neutral density!
#

mln.alpha.1 = 0.4
mln.meanlog.1 = 6.3
mln.meanlog.2 = 6.5
mln.sdlog.1 = 0.08
mln.sdlog.2 = 0.06

k = 300:900
dx = dmln(x = k, alpha.1 = mln.alpha.1, meanlog.1 = mln.meanlog.1,

meanlog.2 = mln.meanlog.2,
sdlog.1 = mln.sdlog.1, sdlog.2 = mln.sdlog.2)

plot(dx ~ k, type="l")

dmln.am Density of Mixture Lognormal for American Options

Description

mln.am is the probability density function of a mixture of three lognormal densities.

Usage

dmln.am(x, u.1, u.2, u.3, sigma.1, sigma.2, sigma.3, p.1, p.2)

Arguments

x value at which the denisty is to be evaluated

u.1 log mean of the first lognormal

u.2 log mean of the second lognormal

u.3 log mean of the third lognormal

sigma.1 log standard deviation of the first lognormal

sigma.2 log standard deviation of the second lognormal

sigma.3 log standard deviation of the third lognormal

p.1 weight assigned to the first density

p.2 weight assigned to the second density

Details

mln is density f(x) = p.1 * f1(x) + p.2 * f2(x) + (1 - p.1 - p.2) * f3(x), where f1, f2, and f3 are
lognormal densities with log means u.1,u.2, and u.3 and standard deviations sigma.1, sigma.2, and
sigma.3 respectively.
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Value

out density value at x

Author(s)

Kam Hamidieh

References

Melick, W. R. and Thomas, C. P. (1997). Recovering an asset’s implied pdf from option prices:
An application to crude oil during the gulf crisis. Journal of Financial and Quantitative Analysis,
32(1), 91-115.

Examples

###
### Just look at a generic density and see if it integrates to 1.
###

u.1 = 4.2
u.2 = 4.5
u.3 = 4.8
sigma.1 = 0.30
sigma.2 = 0.20
sigma.3 = 0.15
p.1 = 0.25
p.2 = 0.45
x = seq(from = 0, to = 250, by = 0.01)
y = dmln.am(x = x, u.1 = u.1, u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,

sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)

plot(y ~ x, type="l")
sum(y * 0.01)

###
### Yes, the sum is near 1.
###

dshimko Density Implied by Shimko Method

Description

dshimko is the probability density function implied by the Shimko method.

Usage

dshimko(r, te, s0, k, y, a0, a1, a2)
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Arguments

r risk free rate

te time to expiration

s0 current asset value

k strike at which volatility to be computed

y dividend yield

a0 constant term in the quadratic polynomial

a1 coefficient term of k in the quadratic polynomial

a2 coefficient term of k squared in the quadratic polynomial

Details

The implied volatility is modeled as: σ(k) = a0 + a1k + a2k
2

Value

density value at x

Author(s)

Kam Hamidieh

References

D. Shimko (1993) Bounds of probability. Risk, 6, 33-47

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

Examples

#
# a0, a1, a2 values come from Shimko's paper.
#

r = 0.05
y = 0.02
a0 = 0.892
a1 = -0.00387
a2 = 0.00000445
te = 60/365
s0 = 400
k = seq(from = 250, to = 500, by = 1)
sigma = 0.15

#
# Does it look like a proper density and intergate to one?
#
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dx = dshimko(r = r, te = te, s0 = s0, k = k, y = y, a0 = a0, a1 = a1, a2 = a2)
plot(dx ~ k, type="l")

#
# sum(dx) should be about 1 since dx is a density.
#

sum(dx)

ew.objective Edgeworth Exapnsion Objective Function

Description

ew.objective is the objective function to be minimized in ew.extraction.

Usage

ew.objective(theta, r, y, te, s0, market.calls, call.strikes, call.weights = 1,
lambda = 1)

Arguments

theta initial values for the optimization

r risk free rate

y dividend yield

te time to expiration

s0 current asset value

market.calls market calls (most expensive to cheapest)

call.strikes strikes for the calls (smallest to largest)

call.weights weights to be used for calls

lambda Penalty parameter to enforce the martingale condition

Details

This function evaluates the weighted squared differences between the market option values and
values predicted by Edgworth based expansion of the risk neutral density.

Value

Objective function evalued at a specific set of values

Author(s)

Kam Hamidieh
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References

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

R. Jarrow and A. Rudd (1982) Approximate valuation for arbitrary stochastic processes. Journal of
Finanical Economics, 10, 347-369

C.J. Corrado and T. Su (1996) S&P 500 index option tests of Jarrow and Rudd’s approximate option
valuation formula. Journal of Futures Markets, 6, 611-629

Examples

r = 0.05
y = 0.03
s0 = 1000
sigma = 0.25
te = 100/365
k = seq(from=800, to = 1200, by = 50)
v = sqrt(exp(sigma^2 * te) - 1)
ln.skew = 3 * v + v^3
ln.kurt = 16 * v^2 + 15 * v^4 + 6 * v^6 + v^8

#
# The objective function should be close to zero.
# Also the weights are automatically set to 1.
#

market.calls.bsm = price.bsm.option(r = r, te = te, s0 = s0, k=k,
sigma=sigma, y=y)$call

ew.objective(theta = c(sigma, ln.skew, ln.kurt), r = r, y = y, te = te, s0=s0,
market.calls = market.calls.bsm, call.strikes = k, lambda = 1)

extract.am.density Mixture of Lognormal Extraction for American Options

Description

extract.am.density extracts the mixture of three lognormals from American options.

Usage

extract.am.density(initial.values = rep(NA, 10), r, te, s0, market.calls,
call.weights = NA, market.puts, put.weights = NA, strikes, lambda = 1,
hessian.flag = F, cl = list(maxit = 10000))
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Arguments

initial.values initial values for the optimization

r risk free rate

te time to expiration

s0 current asset value

market.calls market calls (most expensive to cheapest)

call.weights weights to be used for calls. Set to 1 by default.

market.puts market calls (cheapest to most expensive)

put.weights weights to be used for puts. Set to 1 by default.

strikes strikes (smallest to largest)

lambda Penalty parameter to enforce the martingale condition

hessian.flag If FALSE then no Hessian is produced

cl List of parameter values to be passed to the optimization function

Details

The extracted density is in the form of f(x) = p.1 * f1(x) + p.2 * f2(x) + (1 - p.1 - p.2) * f3(x),
where f1, f2, and f3 are lognormal densities with log means u.1,u.2, and u.3 and standard deviations
sigma.1, sigma.2, and sigma.3 respectively.

For the description of w.1 and w.2 see equations (7) & (8) of Melick and Thomas paper below.

Value

w.1 First weight, a number between 0 and 1, to weigh the option price bounds

w.2 Second weight, a number between 0 and 1, to weigh the option price bounds

u.1 log mean of the first lognormal

u.2 log mean of the second lognormal

u.3 log mean of the third lognormal

sigma.1 log sd of the first lognormal

sigma.2 log sd of the second lognormal

sigma.3 log sd of the third lognormal

p.1 weight assigned to the first density

p.2 weight assigned to the second density
converge.result

Captures the convergence result

hessian Hessian Matrix

Author(s)

Kam Hamidieh
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References

Melick, W. R. and Thomas, C. P. (1997). Recovering an asset’s implied pdf from option prices:
An application to crude oil during the gulf crisis. Journal of Financial and Quantitative Analysis,
32(1), 91-115.

Examples

###
### Try with synthetic data first.
###

r = 0.01
te = 60/365
w.1 = 0.4
w.2 = 0.25
u.1 = 4.2
u.2 = 4.5
u.3 = 4.8
sigma.1 = 0.30
sigma.2 = 0.20
sigma.3 = 0.15
p.1 = 0.25
p.2 = 0.45
theta = c(w.1,w.2,u.1,u.2,u.3,sigma.1,sigma.2,sigma.3,p.1,p.2)
p.3 = 1 - p.1 - p.2

###
### Generate some synthetic American calls & puts
###

expected.f0 = sum(c(p.1, p.2, p.3) * exp(c(u.1,u.2,u.3) +
(c(sigma.1, sigma.2, sigma.3)^2)/2) )

expected.f0

strikes = 50:150

market.calls = numeric(length(strikes))
market.puts = numeric(length(strikes))

for (i in 1:length(strikes))
{

if ( strikes[i] < expected.f0) {
market.calls[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.1, u.1 = u.1,

u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$call.value

market.puts[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.2, u.1 = u.1,
u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$put.value

} else {
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market.calls[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.2, u.1 = u.1,
u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$call.value

market.puts[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.1, u.1 = u.1,
u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$put.value

}

}

###
### ** IMPORTANT **: The code that follows may take 1-2 minutes.
### Copy and paste onto R console the commands
### that follow the greater sign >.
###
### Try the optimization with exact inital values.
### They should be close the actual initials.
###
#
# > s0 = expected.f0 * exp(-r * te)
# > s0
#
# > extract.am.density(initial.values = theta, r = r, te = te, s0 = s0,
# market.calls = market.calls, market.puts = market.puts, strikes = strikes,
# lambda = 1, hessian.flag = FALSE)
#
# > theta
#
###
### Now try without our the correct initial values...
###
#
# > optim.obj.no.init = extract.am.density( r = r, te = te, s0 = s0,
# market.calls = market.calls, market.puts = market.puts, strikes = strikes,
# lambda = 1, hessian.flag = FALSE)
#
# > optim.obj.no.init
# > theta
#
###
### We do get different values but how do the densities look like?
###
#
###
### plot the two densities side by side
###
#
# > x = 10:190
#
# > y.1 = dmln.am(x = x, p.1 = theta[9], p.2 = theta[10],
# u.1 = theta[3], u.2 = theta[4], u.3 = theta[5],
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# sigma.1 = theta[6], sigma.2 = theta[7], sigma.3 = theta[8] )
#
# > o = optim.obj.no.init
#
# > y.2 = dmln.am(x = x, p.1 = o$p.1, p.2 = o$p.2,
# u.1 = o$u.1, u.2 = o$u.2, u.3 = o$u.3,
# sigma.1 = o$sigma.1, sigma.2 = o$sigma.2, sigma.3 = o$sigma.3 )
#
# > matplot(x, cbind(y.1,y.2), main = "Exact = Black, Approx = Red", type="l", lty=1)
#
###
### Densities are close.
###

extract.bsm.density Extract Lognormal Density

Description

bsm.extraction extracts the parameters of the lognormal density as implied by the BSM model.

Usage

extract.bsm.density(initial.values = c(NA, NA), r, y, te, s0, market.calls,
call.strikes, call.weights = 1, market.puts, put.strikes, put.weights = 1,
lambda = 1, hessian.flag = F, cl = list(maxit = 10000))

Arguments

initial.values initial values for the optimization

r risk free rate

y dividend yield

te time to expiration

s0 current asset value

market.calls market calls (most expensive to cheapest)

call.strikes strikes for the calls (smallest to largest)

call.weights weights to be used for calls

market.puts market calls (cheapest to most expensive)

put.strikes strikes for the puts (smallest to largest)

put.weights weights to be used for puts

lambda Penalty parameter to enforce the martingale condition

hessian.flag if F, no hessian is produced

cl list of parameter values to be passed to the optimization function
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Details

If initial.values are not specified then the function will attempt to pick them automatically. cl
is a list that can be used to pass parameters to the optim function.

Value

Let S_T with the lognormal random variable of the risk neutral density.

mu mean of log(S_T)

zeta sd of log(S_T)
converge.result

Did the result converge?

hessian Hessian matrix

Author(s)

Kam Hamidieh

References

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

J. Hull (2011) Options, Futures, and Other Derivatives and DerivaGem Package Prentice Hall,
Englewood Cliffs, New Jersey, 8th Edition

R. L. McDonald (2013) Derivatives Markets Pearson, Upper Saddle River, New Jersey, 3rd Edition

Examples

#
# Create some BSM Based options
#

r = 0.05
te = 60/365
s0 = 1000
sigma = 0.25
y = 0.01

call.strikes = seq(from = 500, to = 1500, by = 25)
market.calls = price.bsm.option(r =r, te = te, s0 = s0,

k = call.strikes, sigma = sigma, y = y)$call

put.strikes = seq(from = 510, to = 1500, by = 25)
market.puts = price.bsm.option(r =r, te = te, s0 = s0,

k = put.strikes, sigma = sigma, y = y)$put

#
# Get extract the parameter of the density
#
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extract.bsm.density(r = r, y = y, te = te, s0 = s0, market.calls = market.calls,
call.strikes = call.strikes, market.puts = market.puts,
put.strikes = put.strikes, lambda = 1, hessian.flag = FALSE)

#
# The extracted parameters should be close to these actual values:
#
actual.mu = log(s0) + ( r - y - 0.5 * sigma^2) * te
actual.zeta = sigma * sqrt(te)
actual.mu
actual.zeta

extract.ew.density Extract Edgeworth Based Density

Description

ew.extraction extracts the parameters for the density approximated by the Edgeworth expansion
method.

Usage

extract.ew.density(initial.values = c(NA, NA, NA), r, y, te, s0, market.calls,
call.strikes, call.weights = 1, lambda = 1, hessian.flag = F,
cl = list(maxit = 10000))

Arguments

initial.values initial values for the optimization

r risk free rate

y dividend yield

te time to expiration

s0 current asset value

market.calls market calls (most expensive to cheapest)

call.strikes strikes for the calls (smallest to largest)

call.weights weights to be used for calls

lambda Penalty parameter to enforce the martingale condition

hessian.flag if F, no hessian is produced

cl list of parameter values to be passed to the optimization function

Details

If initial.values are not specified then the function will attempt to pick them automatically. cl
in form of a list can be used to pass parameters to the optim function.
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Value

sigma volatility of the underlying lognormal

skew normalized skewness

kurt normalized kurtosis
converge.result

Did the result converge?

hessian Hessian matrix

Author(s)

Kam Hamidieh

References

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

R. Jarrow and A. Rudd (1982) Approximate valuation for arbitrary stochastic processes. Journal of
Finanical Economics, 10, 347-369

C.J. Corrado and T. Su (1996) S&P 500 index option tests of Jarrow and Rudd’s approximate option
valuation formula. Journal of Futures Markets, 6, 611-629

Examples

#
# ln.skew & ln.kurt are the normalized skewness and kurtosis of a true lognormal.
#

r = 0.05
y = 0.03
s0 = 1000
sigma = 0.25
te = 100/365
strikes = seq(from=600, to = 1400, by = 1)
v = sqrt(exp(sigma^2 * te) - 1)
ln.skew = 3 * v + v^3
ln.kurt = 16 * v^2 + 15 * v^4 + 6 * v^6 + v^8

#
# Now "perturb" the lognormal
#

new.skew = ln.skew * 1.50
new.kurt = ln.kurt * 1.50

#
# new.skew & new.kurt should not be extracted.
# Note that weights are automatically set to 1.
#
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market.calls = price.ew.option(r = r, te = te, s0 = s0, k=strikes, sigma=sigma,
y=y, skew = new.skew, kurt = new.kurt)$call

ew.extracted.obj = extract.ew.density(r = r, y = y, te = te, s0 = s0,
market.calls = market.calls, call.strikes = strikes,
lambda = 1, hessian.flag = FALSE)

ew.extracted.obj

extract.gb.density Generalized Beta Extraction

Description

extract.gb.density extracts the generalized beta density from market options.

Usage

extract.gb.density(initial.values = c(NA, NA, NA, NA), r, te, y, s0, market.calls,
call.strikes, call.weights = 1, market.puts, put.strikes, put.weights = 1,
lambda = 1, hessian.flag = F, cl = list(maxit = 10000))

Arguments

initial.values initial values for the optimization

r risk free rate

te time to expiration

y dividend yield

s0 current asset value

market.calls market calls (most expensive to cheapest)

call.strikes strikes for the calls (smallest to largest)

call.weights weights to be used for calls

market.puts market calls (cheapest to most expensive)

put.strikes strikes for the puts (smallest to largest)

put.weights weights to be used for puts

lambda Penalty parameter to enforce the martingale condition

hessian.flag if F, no hessian is produced

cl list of parameter values to be passed to the optimization function

Details

This function extracts the generalized beta density implied by the options.
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Value

a extracted power parameter

b extracted scale paramter

v extracted first beta paramter

w extracted second beta parameter
converge.result

Did the result converge?

hessian Hessian matrix

Author(s)

Kam Hamidieh

References

R.M. Bookstaber and J.B. McDonald (1987) A general distribution for describing security price
returns. Journal of Business, 60, 401-424

X. Liu and M.B. Shackleton and S.J. Taylor and X. Xu (2007) Closed-form transformations from
risk-neutral to real-world distributions Journal of Business, 60, 401-424

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

Examples

#
# create some GB based calls and puts
#

r = 0.03
te = 50/365
k = seq(from = 800, to = 1200, by = 10)
a = 10
b = 1000
v = 2.85
w = 2.85
y = 0.01
s0 = exp((y-r)*te) * b * beta(v + 1/a, w - 1/a)/beta(v,w)
s0

call.strikes = seq(from = 800, to = 1200, by = 10)
market.calls = price.gb.option(r = r, te = te, y = y, s0 = s0,

k = call.strikes, a = a, b = s0, v = v, w = w)$call

put.strikes = seq(from = 805, to = 1200, by = 10)
market.puts = price.gb.option(r = r, te = te, y = y, s0 = s0,

k = put.strikes, a = a, b = s0, v = v, w = w)$put

#



26 extract.mln.density

# Extraction...should match the a,b,v,w above. You will also get warning messages.
# Weigths are automatically set to 1.
#

extract.gb.density(r=r, te=te, y = y, s0=s0, market.calls = market.calls,
call.strikes = call.strikes, market.puts = market.puts,
put.strikes = put.strikes, lambda = 1, hessian.flag = FALSE)

extract.mln.density Extract Mixture of Lognormal Densities

Description

mln.extraction extracts the parameters of the mixture of two lognormals densities.

Usage

extract.mln.density(initial.values = c(NA, NA, NA, NA, NA), r, y, te, s0,
market.calls, call.strikes, call.weights = 1, market.puts, put.strikes,
put.weights = 1, lambda = 1, hessian.flag = F, cl = list(maxit = 10000))

Arguments

initial.values initial values for the optimization

r risk free rate

y dividend yield

te time to expiration

s0 current asset value

market.calls market calls (most expensive to cheapest)

call.strikes strikes for the calls (smallest to largest)

call.weights weights to be used for calls

market.puts market calls (cheapest to most expensive)

put.strikes strikes for the puts (smallest to largest)

put.weights weights to be used for puts

lambda Penalty parameter to enforce the martingale condition

hessian.flag if F, no hessian is produced

cl list of parameter values to be passed to the optimization function

Details

mln is the density f(x) = alpha.1 * g(x) + (1 - alpha.1) * h(x), where g and h are densities of two
lognormals with parameters (mean.log.1, sdlog.1) and (mean.log.2, sdlog.2) respectively.
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Value

alpha.1 extracted proportion of the first lognormal. Second one is 1 - alpha.1

meanlog.1 extracted mean of the log of the first lognormal

meanlog.2 extracted mean of the log of the second lognormal

sdlog.1 extracted standard deviation of the log of the first lognormal

sdlog.2 extracted standard deviation of the log of the second lognormal
converge.result

Did the result converge?

hessian Hessian matrix

Author(s)

Kam Hamidieh

References

F. Gianluca and A. Roncoroni (2008) Implementing Models in Quantitative Finance: Methods and
Cases

B. Bahra (1996): Probability distribution of future asset prices implied by option prices. Bank of
England Quarterly Bulletin, August 1996, 299-311

P. Soderlind and L.E.O. Svensson (1997) New techniques to extract market expectations from fi-
nancial instruments. Journal of Monetary Economics, 40, 383-4

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

Examples

#
# Create some calls and puts based on mln and
# see if we can extract the correct values.
#

r = 0.05
y = 0.02
te = 60/365
meanlog.1 = 6.8
meanlog.2 = 6.95
sdlog.1 = 0.065
sdlog.2 = 0.055
alpha.1 = 0.4

call.strikes = seq(from = 800, to = 1200, by = 10)
market.calls = price.mln.option(r = r, y = y, te = te, k = call.strikes,

alpha.1 = alpha.1, meanlog.1 = meanlog.1, meanlog.2 = meanlog.2,
sdlog.1 = sdlog.1, sdlog.2 = sdlog.2)$call
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s0 = price.mln.option(r = r, y = y, te = te, k = call.strikes, alpha.1 = alpha.1,
meanlog.1 = meanlog.1, meanlog.2 = meanlog.2,
sdlog.1 = sdlog.1, sdlog.2 = sdlog.2)$s0

s0
put.strikes = seq(from = 805, to = 1200, by = 10)
market.puts = price.mln.option(r = r, y = y, te = te, k = put.strikes,

alpha.1 = alpha.1, meanlog.1 = meanlog.1,
meanlog.2 = meanlog.2, sdlog.1 = sdlog.1,
sdlog.2 = sdlog.2)$put

###
### The extracted values should be close to the actual values.
###

extract.mln.density(r = r, y = y, te = te, s0 = s0, market.calls = market.calls,
call.strikes = call.strikes, market.puts = market.puts,
put.strikes = put.strikes, lambda = 1, hessian.flag = FALSE)

extract.rates Extract Risk Free Rate and Dividend Yield

Description

extract.rates extracts the risk free rate and the dividend yield from European options.

Usage

extract.rates(calls, puts, s0, k, te)

Arguments

calls market calls (most expensive to cheapest)
puts market puts (cheapest to most expensive)
s0 current asset value
k strikes for the calls (smallest to largest)
te time to expiration

Details

The extraction is based on the put-call parity of the European options. Shimko (1993) - see below -
shows that the slope and intercept of the regression of the calls minus puts onto the strikes contains
the risk free and the dividend rates.

Value

risk.free.rate extracted risk free rate
dividend.yield extracted dividend rate
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Author(s)

Kam Hamidieh

References

D. Shimko (1993) Bounds of probability. Risk, 6, 33-47

Examples

#
# Create calls and puts based on BSM
#

r = 0.05
te = 60/365
s0 = 1000
k = seq(from = 900, to = 1100, by = 25)
sigma = 0.25
y = 0.01

bsm.obj = price.bsm.option(r =r, te = te, s0 = s0, k = k, sigma = sigma, y = y)

calls = bsm.obj$call
puts = bsm.obj$put

#
# Extract rates should give the values of r and y above:
#

rates = extract.rates(calls = calls, puts = puts, k = k, s0 = s0, te = te)
rates

extract.shimko.density

Extract Risk Neutral Density based on Shimko’s Method

Description

shimko.extraction extracts the implied risk neutral density based on modeling the volatility as a
quadratic function of the strikes.

Usage

extract.shimko.density(market.calls, call.strikes, r, y, te, s0, lower, upper)



30 extract.shimko.density

Arguments

market.calls market calls (most expensive to cheapest)

call.strikes strikes for the calls (smallest to largest)

r risk free rate

y dividend yield

te time to expiration

s0 current asset value

lower lower bound for the search of implied volatility

upper upper bound for the search of implied volatility

Details

The correct values for range of search must be specified.

Value
implied.curve.obj

variable that holds a0, a1, and a2 which are the constant terms of the quadratic
polynomial

shimko.density density evaluated at the strikes
implied.volatilities

implied volatilities at each call.strike

Author(s)

Kam Hamidieh

References

D. Shimko (1993) Bounds of probability. Risk, 6, 33-47

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

Examples

#
# Test the function shimko.extraction. If BSM holds then a1 = a2 = 0.
#

r = 0.05
y = 0.02
te = 60/365
s0 = 1000
k = seq(from = 800, to = 1200, by = 5)
sigma = 0.25

bsm.calls = price.bsm.option(r = r, te = te, s0 = s0, k = k,
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sigma = sigma, y = y)$call
extract.shimko.density(market.calls = bsm.calls, call.strikes = k, r = r, y = y, te = te,

s0 = s0, lower = -10, upper = 10)

#
# Note: a0 is about equal to sigma, and a1 and a2 are close to zero.
#

fit.implied.volatility.curve

Fit Implied Quadratic Volatility Curve

Description

fit.implied.volatility.curve estimates the coefficients of the quadratic equation for the im-
plied volatilities.

Usage

fit.implied.volatility.curve(x, k)

Arguments

x a set of implied volatilities

k range of strikes

Details

This function estimates volatility σ as a quadratic function of strike k with the coefficents a0, a1, a2:
σ(k) = a0 + a1k + a2k

2

Value

a0 constant term in the quadratic ploynomial

a1 coefficient term of k in the quadratic ploynomial

a2 coefficient term of k squared in the quadratic polynomial

summary.obj statistical summary of the fit

Author(s)

Kam Hamidieh

References

D. Shimko (1993) Bounds of probability. Risk, 6, 33-47

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London
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Examples

#
# Suppose we see the following implied volatilities and strikes:
#

implied.sigma = c(0.11, 0.08, 0.065, 0.06, 0.05)
strikes = c(340, 360, 380, 400, 410)
tmp = fit.implied.volatility.curve(x = implied.sigma, k = strikes)
tmp

strike.range = 340:410
plot(implied.sigma ~ strikes)
lines(strike.range, tmp$a0 + tmp$a1 * strike.range + tmp$a2 * strike.range^2)

gb.objective Generalized Beta Objective

Description

gb.objective is the objective function to be minimized in extract.gb.density.

Usage

gb.objective(theta, r, te, y, s0, market.calls, call.strikes, call.weights = 1,
market.puts, put.strikes, put.weights = 1, lambda = 1)

Arguments

theta initial values for optimization

r risk free rate

te time to expiration

y dividend yield

s0 current asset value

market.calls market calls (most expensive to cheapest)

call.strikes strikes for the calls (smallest to largest)

call.weights weights to be used for calls

market.puts market calls (cheapest to most expensive)

put.strikes strikes for the puts (smallest to largest)

put.weights weights to be used for puts

lambda Penalty parameter to enforce the martingale condition

Details

This is the function minimized by extract.gb.desnity function.
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Value

obj value of the objective function

Author(s)

Kam Hamidieh

References

R.M. Bookstaber and J.B. McDonald (1987) A general distribution for describing security price
returns. Journal of Business, 60, 401-424

X. Liu and M.B. Shackleton and S.J. Taylor and X. Xu (2007) Closed-form transformations from
risk-neutral to real-world distributions Journal of Business, 60, 401-424

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

Examples

#
# The objective should be very small!
# Note the weights are automatically
# set to 1.
#

r = 0.03
te = 50/365
k = seq(from = 800, to = 1200, by = 10)
a = 10
b = 1000
v = 2.85
w = 2.85
y = 0.01
s0 = exp((y-r)*te) * b * beta(v + 1/a, w - 1/a)/beta(v,w)
s0

call.strikes = seq(from = 800, to = 1200, by = 10)
market.calls = price.gb.option(r = r, te = te, s0 = s0, y = y,

k = call.strikes, a = a, b = b, v = v, w = w)$call

put.strikes = seq(from = 805, to = 1200, by = 10)
market.puts = price.gb.option(r = r, te = te, s0 = s0, y = y,

k = put.strikes, a = a, b = b, v = v, w = w)$put

gb.objective(theta=c(a,b,v,w),r = r, te = te, y = y, s0 = s0,
market.calls = market.calls, call.strikes = call.strikes,
market.puts = market.puts, put.strikes = put.strikes, lambda = 1)
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get.point.estimate Point Estimation of the Density

Description

get.point.estimate estimates the risk neutral density by center differentiation.

Usage

get.point.estimate(market.calls, call.strikes, r, te)

Arguments

market.calls market calls (most expensive to cheapest)

call.strikes strikes for the calls (smallest to largest)

r risk free rate

te time to expiration

Details

This is a non-parametric estimate of the risk neutral density. Due to center differentiation, the
density values are not estimated at the highest and lowest strikes.

Value
point.estimates

values of the estimated density at each strike

Author(s)

Kam Hamidieh

References

J. Hull (2011) Options, Futures, and Other Derivatives and DerivaGem Package Prentice Hall,
Englewood Cliffs, New Jersey, 8th Edition

Examples

###
### Recover the lognormal density based on BSM
###

r = 0.05
te = 60/365
s0 = 1000
k = seq(from = 500, to = 1500, by = 1)
sigma = 0.25
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y = 0.01

bsm.calls = price.bsm.option(r =r, te = te, s0 = s0, k = k, sigma = sigma, y = y)$call
density.est = get.point.estimate(market.calls = bsm.calls,

call.strikes = k, r = r , te = te)

len = length(k)-1
### Note, estimates at two data points (smallest and largest strikes) are lost
plot(density.est ~ k[2:len], type = "l")

mln.am.objective Objective function for the Mixture of Lognormal of American Options

Description

mln.am.objective is the objective function to be minimized in extract.am.density.

Usage

mln.am.objective(theta, s0, r, te, market.calls, call.weights = NA, market.puts,
put.weights = NA, strikes, lambda = 1)

Arguments

theta initial values for the optimization

s0 current asset value

r risk free rate

te time to expiration

market.calls market calls (most expensive to cheapest)

call.weights weights to be used for calls

market.puts market calls (cheapest to most expensive)

put.weights weights to be used for calls

strikes strikes for the calls (smallest to largest)

lambda Penalty parameter to enforce the martingale condition

Details

mln is density f(x) = p.1 * f1(x) + p.2 * f2(x) + (1 - p.1 - p.2) * f3(x), where f1, f2, and f3 are
lognormal densities with log means u.1,u.2, and u.3 and standard deviations sigma.1, sigma.2, and
sigma.3 respectively.

Value

obj Value of the objective function



36 mln.am.objective

Author(s)

Kam Hamidieh

References

Melick, W. R. and Thomas, C. P. (1997). Recovering an asset’s implied pdf from option prices:
An application to crude oil during the gulf crisis. Journal of Financial and Quantitative Analysis,
32(1), 91-115.

Examples

r = 0.01
te = 60/365
w.1 = 0.4
w.2 = 0.25
u.1 = 4.2
u.2 = 4.5
u.3 = 4.8
sigma.1 = 0.30
sigma.2 = 0.20
sigma.3 = 0.15
p.1 = 0.25
p.2 = 0.45
theta = c(w.1,w.2,u.1,u.2,u.3,sigma.1,sigma.2,sigma.3,p.1,p.2)

p.3 = 1 - p.1 - p.2
p.3
expected.f0 = sum(c(p.1, p.2, p.3) * exp(c(u.1,u.2,u.3) +

(c(sigma.1, sigma.2, sigma.3)^2)/2) )
expected.f0

strikes = 30:170

market.calls = numeric(length(strikes))
market.puts = numeric(length(strikes))

for (i in 1:length(strikes))
{

if ( strikes[i] < expected.f0) {
market.calls[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.1, u.1 = u.1,

u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$call.value

market.puts[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.2, u.1 = u.1,
u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$put.value

} else {

market.calls[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.2, u.1 = u.1,
u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$call.value
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market.puts[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.1, u.1 = u.1,
u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$put.value

}

}

###
### Quickly look at the option values...
###

par(mfrow=c(1,2))
plot(market.calls ~ strikes, type="l")
plot(market.puts ~ strikes, type="l")
par(mfrow=c(1,1))

###
### ** IMPORTANT **: The code that follows may take a few seconds.
### Copy and paste onto R console the commands
### that follow the greater sign >.
###
###
### Next try the objective function. It should be zero.
### Note: Let weights be the defaults values of 1.
###
#
# > s0 = expected.f0 * exp(-r * te)
# > s0
#
# > mln.am.objective(theta, s0 =s0, r = r, te = te, market.calls = market.calls,
# market.puts = market.puts, strikes = strikes, lambda = 1)
#
###
### Now directly try the optimization with perfect initial values.
###
#
#
# > optim.obj.with.synthetic.data = optim(theta, mln.am.objective, s0 = s0, r=r, te=te,
# market.calls = market.calls, market.puts = market.puts, strikes = strikes,
# lambda = 1, hessian = FALSE , control=list(maxit=10000) )
#
# > optim.obj.with.synthetic.data
#
# > theta
#
###
### It does take a few seconds but the optim converges to exact theta values.
###

mln.objective Objective function for the Mixture of Lognormal
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Description

mln.objective is the objective function to be minimized in extract.mln.density.

Usage

mln.objective(theta, r, y, te, s0, market.calls, call.strikes, call.weights,
market.puts, put.strikes, put.weights, lambda = 1)

Arguments

theta initial values for the optimization

r risk free rate

y dividend yield

te time to expiration

s0 current asset value

market.calls market calls (most expensive to cheapest)

call.strikes strikes for the calls (smallest to largest)

call.weights weights to be used for calls

market.puts market calls (cheapest to most expensive)

put.strikes strikes for the puts (smallest to largest)

put.weights weights to be used for puts

lambda Penalty parameter to enforce the martingale condition

Details

mln is the density f(x) = alpha.1 * g(x) + (1 - alpha.1) * h(x), where g and h are densities of two
lognormals with parameters (mean.log.1, sdlog.1) and (mean.log.2, sdlog.2) respectively.

Value

obj value of the objective function

Author(s)

Kam Hamidieh

References

F. Gianluca and A. Roncoroni (2008) Implementing Models in Quantitative Finance: Methods and
Cases

B. Bahra (1996): Probability distribution of future asset prices implied by option prices. Bank of
England Quarterly Bulletin, August 1996, 299-311

P. Soderlind and L.E.O. Svensson (1997) New techniques to extract market expectations from fi-
nancial instruments. Journal of Monetary Economics, 40, 383-429

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London
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Examples

#
# The mln objective function should be close to zero.
# The weights are automatically set to 1.
#

r = 0.05
te = 60/365
y = 0.02

meanlog.1 = 6.8
meanlog.2 = 6.95
sdlog.1 = 0.065
sdlog.2 = 0.055
alpha.1 = 0.4

# This is the current price implied by parameter values:
s0 = 981.8815

call.strikes = seq(from = 800, to = 1200, by = 10)
market.calls = price.mln.option(r=r, y = y, te = te, k = call.strikes,

alpha.1 = alpha.1, meanlog.1 = meanlog.1, meanlog.2 = meanlog.2,
sdlog.1 = sdlog.1, sdlog.2 = sdlog.2)$call

put.strikes = seq(from = 805, to = 1200, by = 10)
market.puts = price.mln.option(r = r, y = y, te = te, k = put.strikes,

alpha.1 = alpha.1, meanlog.1 = meanlog.1, meanlog.2 = meanlog.2,
sdlog.1 = sdlog.1, sdlog.2 = sdlog.2)$put

mln.objective(theta=c(alpha.1,meanlog.1, meanlog.2 , sdlog.1, sdlog.2),
r = r, y = y, te = te, s0 = s0,
market.calls = market.calls, call.strikes = call.strikes,
market.puts = market.puts, put.strikes = put.strikes, lambda = 1)

MOE Mother of All Extractions

Description

MOE function extracts the risk neutral density based on all models and summarizes the results.

Usage

MOE(market.calls, call.strikes, market.puts, put.strikes, call.weights = 1,
put.weights = 1, lambda = 1, s0, r, te, y, file.name = "myfile")

Arguments

market.calls market calls (most expensive to cheapest)
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call.strikes strikes for the calls (smallest to largest)
market.puts market calls (cheapest to most expensive)
put.strikes strikes for the puts (smallest to largest)
call.weights Weights for the calls (must be in the same order of calls)
put.weights Weights for the puts (must be in the same order of puts)
lambda Penalty parameter to enforce the martingale condition
s0 Current asset value
r risk free rate
te time to expiration
y dividend yield
file.name File names where analysis is to be saved. SEE DETAILS!

Details

The MOE function in a few key strokes extracts the risk neutral density via various methods and
summarizes the results.

This function should only be used for European options.

NOTE: Three files will be produced: filename will have the pdf version of the results. file.namecalls.csv
will have the predicted call values. file.nameputs.csv will have the predicted put values.

Value

bsm.mu mean of log(S(T)), when S(T) is lognormal
bsm.sigma SD of log(S(T)), when S(T) is lognormal
gb.a extracted power parameter, when S(T) is assumed to be a GB rv
gb.b extracted scale paramter, when S(T) is assumed to be a GB rv
gb.v extracted first beta paramter, when S(T) is assumed to be a GB rv
gb.w extracted second beta parameter, when S(T) is assumed to be a GB rv
mln.alpha.1 extracted proportion of the first lognormal. Second one is 1 - alpha.1 in mixture

of lognormals
mln.meanlog.1 extracted mean of the log of the first lognormal in mixture of lognormals
mln.meanlog.2 extracted mean of the log of the second lognormal in mixture of lognormals
mln.sdlog.1 extracted standard deviation of the log of the first lognormal in mixture of log-

normals
mln.sdlog.2 extracted standard deviation of the log of the second lognormal in mixture of

lognormals
ew.sigma volatility when using the Edgeworth expansions
ew.skew normalized skewness when using the Edgeworth expansions
ew.kurt normalized kurtosis when using the Edgeworth expansions
a0 extracted constant term in the quadratic polynomial of Shimko method
a1 extracted coefficient term of k in the quadratic polynomial of Shimko method
a2 extracted coefficient term of k squared in the quadratic polynomial of Shimko

method
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Author(s)

Kam Hamidieh

References

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

Examples

###
### You should see that all methods extract the same density!
###

r = 0.05
te = 60/365
s0 = 1000
sigma = 0.25
y = 0.02

strikes = seq(from = 500, to = 1500, by = 5)
bsm.prices = price.bsm.option(r =r, te = te, s0 = s0,

k = strikes, sigma = sigma, y = y)

calls = bsm.prices$call
puts = bsm.prices$put

###
### See where your results will go...
###

getwd()

###
### Running this may take 1-2 minutes...
###
### MOE(market.calls = calls, call.strikes = strikes, market.puts = puts,
### put.strikes = strikes, call.weights = 1, put.weights = 1,
### lambda = 1, s0 = s0, r = r, te = te, y = y, file.name = "myfile")
###
### You may get some warning messages. This happens because the
### automatic initial value selection sometimes picks values
### that produce NaNs in the generalized beta density estimation.
### These messages are often inconsequential.
###
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oil.2012.10.01 West Texas Intermediate Crude Oil Options on 2013-10-01

Description

This dataset contains West Texas Intermediate (WTI) crude oil options with 43 days to expiration
at the end of the business day October 1, 2012. On October 1, 2012, WTI closed at 92.44.

Usage

data(oil.2012.10.01)

Format

A data frame with 332 observations on the following 7 variables.

type a factor with levels C for call option P for put option

strike option strike

settlement option settlement price

openint option open interest

volume trading volume

delta option delta

impliedvolatility option implied volatility

Source

CME posts sample data at: http://www.cmegroup.com/market-data/datamine-historical-data/endofday.html

Examples

data(oil.2012.10.01)

pgb CDF of Generalized Beta

Description

pgb is the cumulative distribution function (CDF) of a genaralized beta random variable.

Usage

pgb(x, a, b, v, w)
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Arguments

x value at which the CDF is to be evaluated

a power parameter > 0

b scale paramter > 0

v first beta paramter > 0

w second beta parameter > 0

Details

Let B be a beta random variable with parameters v and w. Then Z = b *(B/(1-B))^(1/a) is a gener-
alized beta random variable with parameters (a,b,v,w).

Value

out CDF value at x

Author(s)

Kam Hamidieh

References

R.M. Bookstaber and J.B. McDonald (1987) A general distribution for describing security price
returns. Journal of Business, 60, 401-424

X. Liu and M.B. Shackleton and S.J. Taylor and X. Xu (2007) Closed-form transformations from
risk-neutral to real-world distributions Journal of Business, 60, 401-424

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

Examples

#
# What does the cdf of a GB look like?
#

a = 1
b = 10
v = 2
w = 2

x = seq(from = 0, to = 500, by = 0.01)
y = pgb(x = x, a = a, b = b, v = v, w = w)
plot(y ~ x, type = "l")
abline(h=c(0,1), lty=2)
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price.am.option Price American Options on Mixtures of Lognormals

Description

price.am.option gives the price of a call and a put option at a set strike when the risk neutral
density is a mixture of three lognormals.

Usage

price.am.option(k, r, te, w, u.1, u.2, u.3, sigma.1, sigma.2, sigma.3, p.1, p.2)

Arguments

k Strike

r risk free rate

te time to expiration

w Weight, a number between 0 and 1, to weigh the option price bounds

u.1 log mean of the first lognormal

u.2 log mean of the second lognoral

u.3 log mean of the second lognoral

sigma.1 log sd of the first lognormal

sigma.2 log mean of the second lognormal

sigma.3 log mean of the third lognormal

p.1 weight assigned to the first density

p.2 weight assigned to the second density

Details

mln is density f(x) = p.1 * f1(x) + p.2 * f2(x) + (1 - p.1 - p.2) * f3(x), where f1, f2, and f3 are
lognormal densities with log means u.1,u.2, and u.3 and standard deviations sigma.1, sigma.2, and
sigma.3 respectively.

Note: Different weight values, w, need to be assigned to whether the call or put is in the money or
not. See equations (7) & (8) of Melick and Thomas paper below.

Value

call.value American call value

put.value American put value

expected.f0 Expected mean value of asset at expiration

prob.f0.gr.k Probability asset values is greater than strike

prob.f0.ls.k Probability asset value is less than strike
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expected.f0.f0.gr.k

Expected value of asset given asset exceeds strike
expected.f0.f0.ls.k

Expected value of asset given asset is less than strike

Author(s)

Kam Hamidieh

References

Melick, W. R. and Thomas, C. P. (1997). Recovering an asset’s implied pdf from option prices:
An application to crude oil during the gulf crisis. Journal of Financial and Quantitative Analysis,
32(1), 91-115.

Examples

###
### Set a few parameters and create some
### American options.
###

r = 0.01
te = 60/365
w.1 = 0.4
w.2 = 0.25
u.1 = 4.2
u.2 = 4.5
u.3 = 4.8
sigma.1 = 0.30
sigma.2 = 0.20
sigma.3 = 0.15
p.1 = 0.25
p.2 = 0.45
theta = c(w.1,w.2,u.1,u.2,u.3,sigma.1,sigma.2,sigma.3,p.1,p.2)

p.3 = 1 - p.1 - p.2
p.3
expected.f0 = sum(c(p.1, p.2, p.3) * exp(c(u.1,u.2,u.3) +

(c(sigma.1, sigma.2, sigma.3)^2)/2) )
expected.f0

strikes = 30:170

market.calls = numeric(length(strikes))
market.puts = numeric(length(strikes))

for (i in 1:length(strikes))
{

if ( strikes[i] < expected.f0) {
market.calls[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.1, u.1 = u.1,
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u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$call.value

market.puts[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.2, u.1 = u.1,
u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$put.value

} else {

market.calls[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.2, u.1 = u.1,
u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$call.value

market.puts[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.1, u.1 = u.1,
u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$put.value

}

}

###
### Quickly look at the option values...
###

par(mfrow=c(1,2))
plot(market.calls ~ strikes, type="l")
plot(market.puts ~ strikes, type="l")
par(mfrow=c(1,1))

price.bsm.option Price BSM Option

Description

bsm.option.price computes the BSM European option prices.

Usage

price.bsm.option(s0, k, r, te, sigma, y)

Arguments

s0 current asset value

k strike

r risk free rate

te time to expiration

sigma volatility

y dividend yield
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Details

This function implements the classic Black-Scholes-Merton option pricing model.

Value

d1 value of (log(s0/k) + (r - y + (sigma^2)/2) * te)/(sigma * sqrt(te))

d2 value of d1 - sigma * sqrt(te)

call call price

put put price

Author(s)

Kam Hamidieh

References

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

J. Hull (2011) Options, Futures, and Other Derivatives and DerivaGem Package Prentice Hall,
Englewood Cliffs, New Jersey, 8th Edition

R. L. McDonald (2013) Derivatives Markets Pearson, Upper Saddle River, New Jersey, 3rd Edition

Examples

#
# call should be 4.76, put should be 0.81, from Hull 8th, page 315, 316
#

r = 0.10
te = 0.50
s0 = 42
k = 40
sigma = 0.20
y = 0

bsm.option = price.bsm.option(r =r, te = te, s0 = s0, k = k, sigma = sigma, y = y)
bsm.option

#
# Make sure put-call parity holds, Hull 8th, page 351
#

(bsm.option$call - bsm.option$put) - (s0 * exp(-y*te) - k * exp(-r*te))
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price.ew.option Price Options with Edgeworth Approximated Density

Description

price.ew.option computes the option prices based on Edgeworth approximated densities.

Usage

price.ew.option(r, te, s0, k, sigma, y, skew, kurt)

Arguments

r risk free rate

te time to expiration

s0 current asset value

k strike

sigma volatility

y dividend rate

skew normalized skewness

kurt normalized kurtosis

Details

Note that this function may produce negative prices if skew and kurt are not well estimated from
the data.

Value

call Edgeworth based call

put Edgeworth based put

Author(s)

Kam Hamidieh

References

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

R. Jarrow and A. Rudd (1982) Approximate valuation for arbitrary stochastic processes. Journal of
Finanical Economics, 10, 347-369

C.J. Corrado and T. Su (1996) S&P 500 index option tests of Jarrow and Rudd’s approximate option
valuation formula. Journal of Futures Markets, 6, 611-629
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Examples

#
# Here, the prices must match EXACTLY the BSM prices:
#

r = 0.05
y = 0.03
s0 = 1000
sigma = 0.25
te = 100/365
k = seq(from=800, to = 1200, by = 50)
v = sqrt(exp(sigma^2 * te) - 1)
ln.skew = 3 * v + v^3
ln.kurt = 16 * v^2 + 15 * v^4 + 6 * v^6 + v^8

ew.option.prices = price.ew.option(r = r, te = te, s0 = s0, k=k, sigma=sigma,
y=y, skew = ln.skew, kurt = ln.kurt)

bsm.option.prices = price.bsm.option(r = r, te = te, s0 = s0, k=k, sigma=sigma, y=y)

ew.option.prices
bsm.option.prices

###
### Now ew prices should be different as we increase the skewness and kurtosis:
###

new.skew = ln.skew * 1.10
new.kurt = ln.kurt * 1.10

new.ew.option.prices = price.ew.option(r = r, te = te, s0 = s0, k=k, sigma=sigma,
y=y, skew = new.skew, kurt = new.kurt)

new.ew.option.prices
bsm.option.prices

price.gb.option Generalized Beta Option Pricing

Description

price.gb.option computes the price of options.

Usage

price.gb.option(r, te, s0, k, y, a, b, v, w)

Arguments

r risk free interest rate
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te time to expiration

s0 current asset value

k strike

y dividend yield

a power parameter > 0

b scale paramter > 0

v first beta paramter > 0

w second beta parameter > 0

Details

This function is used to compute European option prices when the underlying has a generalized
beta (GB) distribution. Let B be a beta random variable with parameters v and w. Then Z = b
*(B/(1-B))^(1/a) is a generalized beta random variable with parameters with (a,b,v,w).

Value

prob.1 Probability that a GB random variable with parameters (a,b,v+1/a,w-1/a) will be
above the strike

prob.2 Probability that a GB random variable with parameters (a,b,v,w) will be above
the strike

call call price

put put price

Author(s)

Kam Hamidieh

References

R.M. Bookstaber and J.B. McDonald (1987) A general distribution for describing security price
returns. Journal of Business, 60, 401-424

X. Liu and M.B. Shackleton and S.J. Taylor and X. Xu (2007) Closed-form transformations from
risk-neutral to real-world distributions Journal of Business, 60, 401-424

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

Examples

#
# A basic GB option pricing....
#

r = 0.03
te = 50/365
s0 = 1000.086
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k = seq(from = 800, to = 1200, by = 10)
y = 0.01
a = 10
b = 1000
v = 2.85
w = 2.85

price.gb.option(r = r, te = te, s0 = s0, k = k, y = y, a = a, b = b, v = v, w = w)

price.mln.option Price Options on Mixture of Lognormals

Description

mln.option.price gives the price of a call and a put option at a strike when the risk neutral density
is a mixture of two lognormals.

Usage

price.mln.option(r, te, y, k, alpha.1, meanlog.1, meanlog.2, sdlog.1, sdlog.2)

Arguments

r risk free rate

te time to expiration

y dividend yield

k strike

alpha.1 proportion of the first lognormal. Second one is 1 - alpha.1

meanlog.1 mean of the log of the first lognormal

meanlog.2 mean of the log of the second lognormal

sdlog.1 standard deviation of the log of the first lognormal

sdlog.2 standard deviation of the log of the second lognormal

Details

mln is the density f(x) = alpha.1 * g(x) + (1 - alpha.1) * h(x), where g and h are densities of two
lognormals with parameters (mean.log.1, sdlog.1) and (mean.log.2, sdlog.2) respectively.

Value

call call price

put put price

s0 current value of the asset as implied by the mixture distribution
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Author(s)

Kam Hamidieh

References

F. Gianluca and A. Roncoroni (2008) Implementing Models in Quantitative Finance: Methods and
Cases

B. Bahra (1996): Probability distribution of future asset prices implied by option prices. Bank of
England Quarterly Bulletin, August 1996, 299-311

P. Soderlind and L.E.O. Svensson (1997) New techniques to extract market expectations from fi-
nancial instruments. Journal of Monetary Economics, 40, 383-429

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

Examples

#
# Try out a range of options
#

r = 0.05
te = 60/365
k = 700:1300
y = 0.02
meanlog.1 = 6.80
meanlog.2 = 6.95
sdlog.1 = 0.065
sdlog.2 = 0.055
alpha.1 = 0.4

mln.prices = price.mln.option(r = r, y = y, te = te, k = k, alpha.1 = alpha.1,
meanlog.1 = meanlog.1, meanlog.2 = meanlog.2, sdlog.1 = sdlog.1, sdlog.2 = sdlog.2)

par(mfrow=c(1,2))
plot(mln.prices$call ~ k)
plot(mln.prices$put ~ k)
par(mfrow=c(1,1))

price.shimko.option Price Option based on Shimko’s Method

Description

price.shimko.option prices a European option based on the extracted Shimko volatility function.
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Usage

price.shimko.option(r, te, s0, k, y, a0, a1, a2)

Arguments

r risk free rate

te time to expiration

s0 current asset value

k strike

y dividend yield

a0 constant term in the quadratic polyynomial

a1 coefficient term of k in the quadratic polynomial

a2 coefficient term of k squared in the quadratic polynomial

Details

This function may produce negative option values when nonsensical values are used for a0, a1, and
a2.

Value

call call price

put put price

Author(s)

Kam Hamidieh

References

D. Shimko (1993) Bounds of probability. Risk, 6, 33-47

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

Examples

r = 0.05
y = 0.02
te = 60/365
s0 = 1000
k = 950
sigma = 0.25
a0 = 0.30
a1 = -0.00387
a2 = 0.00000445

#
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# Note how Shimko price is the same when a0 = sigma, a1=a2=0 but substantially
# more when a0, a1, a2 are changed so the implied volatilies are very high!
#

price.bsm.option(r = r, te = te, s0 = s0, k = k, sigma = sigma, y = y)$call
price.shimko.option(r = r, te = te, s0 = s0, k = k, y = y,

a0 = sigma, a1 = 0, a2 = 0)$call
price.shimko.option(r = r, te = te, s0 = s0, k = k, y = y,

a0 = a0, a1 = a1, a2 = a2)$call

sp500.2013.04.19 S&P 500 Index Options on 2013-04-19

Description

This dataset contains S&P 500 options with 62 days to expiration at the end of the business day
April 19, 2013. On April 19, 2013, S&P 500 closed at 1555.25.

Usage

data(sp500.2013.04.19)

Format

A data frame with 171 observations on the following 19 variables.

bidsize.c call bid size
bid.c call bid price
ask.c call ask price
asksize.c call ask size
chg.c change in call price
impvol.c call implied volatility
vol.c call volume
openint.c call open interest
delta.c call delta
strike option strike
bidsize.p put bid size
bid.p put bid price
ask.p put ask price
asksize.p put ask size
chg.p change in put price
impvol.p put implied volatility
vol.p put volume
openint.p put open interest
delta.p put delta
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Source

http://www.cboe.com/DelayedQuote/QuoteTableDownload.aspx

Examples

data(sp500.2013.04.19)

sp500.2013.06.24 S&P 500 Index Options on 2013-06-24

Description

This dataset contains S&P 500 options with 53 days to expiration at the end of the business day
June 24, 2013. On June 24, 2013, S&P 500 closed at 1573.09.

Usage

data(sp500.2013.06.24)

Format

A data frame with 173 observations on the following 9 variables.

bid.c call bid price

ask.c call ask price

vol.c call volume

openint.c call open interest

strike option strike

bid.p put bid price

ask.p put ask price

vol.p put volume

openint.p put open interest

Source

http://www.cboe.com/DelayedQuote/QuoteTableDownload.aspx

Examples

data(sp500.2013.06.24)
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vix.2013.06.25 VIX Options on 2013-06-25

Description

This dataset contains VIX options with 57 days to expiration at the end of the business day June 25,
2013. On June 25, 2013, VIX closed at 18.21.

Usage

data(vix.2013.06.25)

Format

A data frame with 35 observations on the following 13 variables.

last.c closing call price

change.c change in call price from previous day

bid.c call bid price

ask.c call ask price

vol.c call volume

openint.c call open interest

strike option strike

last.p closing put price

change.p change in put price from previous day

bid.p put bid price

ask.p put ask price

vol.p put volume

openint.p put open interest

Source

http://www.cboe.com/DelayedQuote/QuoteTableDownload.aspx

Examples

data(vix.2013.06.25)
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